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The stochastic model of irreversible processes is developed in a fashion that 
yields expressions for the magnitudes and temperature dependences of 
chemical reaction rate constants. The model is sufficiently abstract to 
encompass reactions in liquids as well as those in gases. For liquid reactions 
both the general point of view and one feature of the results (the "frequency 
factor") are apparently new. For gas reactions the viewpoints and the 
results are compatible with (though not as detailed as) those of well- 
established collision theory. An approximation (to the effect that non- 
reactive but energy-redistributing transitions are much more frequent than 
reactive ones) may limit the quantitative, though not the schematic, 
application of this development to reactions in the presence of an excess 
of inert diluent. The traditional assumption to the effect that reactants are 
in equilibrium with "activated complexes" (whether or not such exist in 
the sense of possessing well-defined microstates) is avoided. As in previous 
discussion of sufficient conditions for an Arrhenius rate law, in which 
certain complicating features (treated here) of the case of chemical reactions 
were ignored, the method used here involves taking explicit account of the 
role of those (rapidly equilibrating via frequent nonreactive transitions) 
degrees of freedom that serve as the activation-energy-supplying (and 
temperature defining) "reservoir"  by use of an especially detailed form of 
stochastic master equation. A concise form for the master equation facili- 
tates (1) the appropriate extension of the previously described steady state 
treatment of the case in which a "transit ion state" lasts sufficiently long to 
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be internally equilibrated and (2) the treatment of the probably more 
realistic case in which reactants undergo transitions directly to products 
without a definable intermediate and in which "transition state" can only 
be defined in terms of an energy threshold in the reaction transition prob- 
ability. The latter case is a generalization to arbitrary density of that 
originally treated by Ross and Mazur within the framework of collision 
theory for bimoleculear dilute gas reactions. 

The familiar exponential dependence on "free energy of activation" 
is obtained for both cases, but the physical bi~sis for it is different (in both 
cases) from that provided by the classical version of transition state 
theory. 

The "frequency factor" is not in either case simply kT/h but rather is 
dependent on the fundamental couplings within the system. It is also 
dependent on an effective "number of states" of reactants, products, and 
reservoir. A brief discussion of the possible significance of this latter 
feature in both enzymatic catalysis and heterogeneous catalysis is presented. 

KEY WORDS:  Chemical kinetics; stochastic master equation; transition 
state theory; liquid solution; catalysis. 

1. I N T R O D U C T I O N  

Recent theoretical progress ifi the interpretation o f  the magnitudes and 
temperature dependences of  chemical reaction rate constants has dealt 
primarily with reactions in (dilute) gases. This is true not  only of  the modern  
version o f  "coll ision theory ''~1,2) but also o f  the "phase  space trajectory ''(3~ 
treatment.  

Despite their importance in organic, inorganic, and biological chemis- 
try, reactions in liquids have received little recent theoretical attention, a 
circumstance that  has left the interpretation o f  their kinetics in the hands 
o f  a transition state theory that  is now almost  40 years old (see, e.g., 
Ref. 4). 

Until  relatively recently it seemed permissible to view the classical 
transition state theory as an abstraction o f  those features o f  collision theory 
that  are capable of  generalization to the encompassment  o f  reactions in 
dense media. Indeed the point  o f  view that  transition state theory is a 
generalization o f  collision theory was supported by identification o f  putatively 
corresponding factors in the results o f  these theories (e.g., " e n t r o p y  of  
activation f ac to r "  f rom transit ion state theory and "steric  fac to r"  f rom 
collision theory). 

That  such identifications are not  unique shows that  the fact that  they 
can be made does not  constitute good  evidence for close kinship o f  the 
theories in question. Indeed, it is clear that  modern  versions of  collision 
theory cannot  be viewed as detailed analyses o f  a special case of  the classical 
transition state theory. In  the first place, modern  versions o f  collision theory 
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do not make the assumption of an equilibrium between reactants and transi- 
tion state species ("activated complexes").  Such an assumption was the 
essential basis for the appearance of exponential dependences of  rate con- 
stants of  "free energies of activation" in the classical transition state theory, 
whereas modern collision theory can arrive at this result without this 
assumption. <1~ In the second place the assumption of the very existence of a 
transition state in the sense required by the transition state theory, that is, 
in the sense of an entity possessing identifiable microstates (e.g., quantum 
levels), is sometimes avoided (1~ in modern gas reaction theory. 

The avoidance, as in contemporary gas reaction theory, of these assump- 
tions is a feature that one would wish to embody in any attempt to formulate 
a theory that is sufficiently general to encompass reactions in liquids. Such 
a feature would be desirable not only to allow the possibility of  obtaining a 
theory that would be consistent with collision theory in the low-density 
limit, but also to admit into such a theory the possibility of a full measure of  
internal self-consistency. That  the assumption of equilibrium between 
reactants and transition state species prevents the latter can be seen by the 
following argument. A theory for rate constants can obviously impose no 
restriction on the relative amounts o f "  reactants" and "p roduc t s "  with which 
one may choose to start a chemical reaction. Since these concentrations are 
fully as important  as the rate constants in determining the direction in which 
the given reaction will proceed, the theory has no basis for specifying which 
reaction is to be considered the " f o r w a r d "  reaction and which the "back-  
ward"  one. Therefore, in its formal aspects, the theory must treat the reaction 
one chooses to call " b a c k w a r d "  on the same basis as that one calls " forward ."  
It follows that any assumption of equilibrium between transition state and 
what one chooses to call " reac tan t s"  must, strictly speaking, be accompanied 
by an assumption of equilibrium between transition state and what one calls 
"produc ts . "  Since species in equilibrium with a common species are in 
equilibrium with each other, it is clear that the conventional formulation of 
transition state theory cannot be fully self-consistent except when reactants 
are in equilibrium with products. 

One line of  approach to liquid reaction kinetics that avoids these 
troublesome assumptions is the stochastic line initiated by Kramers (5~ in 
1940. His particular treatment of  (Brownian) diffusion over a barrier is 
relevant to reactions that proceed in increments each of which involves only 
small momentum and energy transfers. More recently Montroll  and Shuler (6~ 
and Montroll  (7~ have given a quantum mechanical counterpart  of  the Kramers 
theory in which the restriction to reaction in a series of small steps is repre- 
sented by the use of  Landau-Teller  selection rules. In this paper we will 
avoid this restriction, but will invoke a different one. 

We utilize here the classical assumption (common to both transition 
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state theory and most versions of collision theory) of internal equilibration of 
individual molecular species. This assumption must not be confused with the 
assumption that any one species or set of species (e.g., reactants) is equilibrated 
with any other (e.g., activated complexes). Although less drastic than the 
latter, the assumption of internal equilibration will limit the precise, if not 
the schematic, applicability of this analysis to reactions carried out in the 
presence of an excess of inert solvent (see below). 

Widom ~8~ has extensively applied stochastic methods to the question of 
existence and interpretation of chemical rate constants. His work has pointed 
out the danger inherent in various types of assumptions concerning popula- 
tions of some molecular quantum states. Indeed, he has shown that the 
assumption of internal equilibration must be discarded for precise analysis 
of reactions proceeding in the absence of inert diluent. 

McQuarrie ~ has applied stochastic methods to the analysis of com- 
plicated reactions in terms of elementary steps. In this work he was not 
primarily concerned with interpretation of the rate constants of the elementary 
steps, the focus of our concern here. 

In an article by Gibbs, ~1~ hereinafter designated as I, an especially de- 
tailed form of stochastic "master"  (Pauli) equation was used to demonstrate 
a set of sufficient conditions for an Arrhenius temperature dependence in 
an idealized simple process possessing little more than those features that 
constitute the essence of a thermally activated process (potential barrier to 
be traversed, auxiliary degrees of freedom that equilibrate among themselves 
sufficiently rapidly to define a temperature, etc.). In this detailed form of 
master equation, specific formal account was taken not only of transitions 
in the "system" undergoing the process (e.g., chemical reaction), but also 
of the requisite accompanying transitions in what was called in I the 
"reservoir." This "reservoir" is simply the aggregate of those degrees of 
freedom whose downward (in energy) transitions supply the "activation 
energy" for activating transitions in the degrees of freedom associated with 
the "system." In the case, for example, of a nuclear spin-lattice relaxation 
this "reservoir" would be the "lattice." In the case of a chemical reaction in 
solution this reservoir would be composed of all translational, rotational, and 
vibrational degrees of freedom of inert solvent, as well as of many such 
degrees of freedom of the reacting molecules. 

When these auxiliary degrees of freedom, which serve as the reservoir 
are, in the aggregate, present in large excess relative to the degree of freedom 
associated with the reaction (i.e., that along the so-called "reaction coordi- 
nate") or when they exchange energy nonreactively among themselves 
sufficiently rapidly, then they suffer no significant departure from equilibrium 
ratios of the populations of their microstates and consequently provide the 
requisite definition of "temperature." 
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The detailed bookkeeping in I permitted specific consideration of the 
role of energy conservation in limiting the set of allowable composite "re-  
active" transitions in the system-reservoir combination. With this formal 
identification of energy-conserving transitions it was also possible to apply 
the principle of microscopic reversibility to transition probabilities. With 
these concepts and with use of a steady-state (as contrasted with equilibrium) 
assumption for overall transition state population, an averaged (with respect 
to time-dependent microstate populations) Arrhenius-like expression was 
obtained. When it was additionally assumed that the quantum states of each 
"sys tem" species (reactant molecule, "activated complex," or product 
molecule) are internally equilibrated, i.e., that the molecules of a particular 
species present in the "sys tem" at any given time are distributed among their 
microstates in the equilibrium ratio (even though the overall concentrations 
of the various "sys tem" species are changing in time and are not in equilibrium 
with each other), then a modified version of Eyring's form ~4~ for the Arrhenius 
expression was obtained. Specifically, the exponential dependence on a "free 
energy of activation ''2 was recovered, but the expression kT/h for the 
"frequency factor"  was not. 

As stated above, the treatment in I dealt exclusively with an idealized, 
simple process. The disparate complicating features of various individual 
types of real processes were ignored in I. In the particular case of chemical 
reactions there are three principal complicating features. 

First, there is the fact that the barrier-traversing entities (called "sub- 
systems" in I) of the system are not simply individual particles or individual 
molecules but rather stoichiometric combinations of molecules. Treatment 
of this necessitates a generalization of the stochastic master equation of I. 

Second, there is the fact that, in the case of reactions proceeding in the 
absence of a large excess of inert diluent, certain degrees of freedom (transla- 
tional, rotational, vibrational) of the reactant and product molecules them- 
selves play the role of the activation-energy-supplying "reservoir"  and the 
associated fact that, unless one reactant or product species is present in 
large excess, the nature of predominant reservoir degrees of freedom changes 
as the reaction proceeds. In such a case the assumption of internal equilibra- 
tion of a species among its microstates may no longer be a good one (see 
below). Nevertheless, this case requires treatment in order that the con- 
sistency of the low-density limit of the stochastic approach under discussion 
with the familiar collision theory for this limit can be seen. 

Third, there is the fact that in many cases of chemical reactions the 
"transition state" may not be sufficiently long-lived to be identified as a 
well-defined set of microstates (e.g., stationary states of the Hamiltonian). (1~ 

2 See Laidler (11~ for a bibliography of the history of this concept of a "free energy of 
activation." 
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This is in contradistinction to the process treated in I, which might be 
exemplified by a restricted internal rotation in a molecule and for which the 
transition state could be identified as the set of all microstates with energy 
sufficiently high to constitute a quasi-free rotation either over or (via 
tunneling) through the top of the restriction potential barrier. In the case of  a 
chemical reaction, however, the motion defining a "transit ion state" is that 
along a "react ion coordinate," and this has been recognized, at least for 
dilute gas reactions, to be more akin to a portion of a translation than to a 
contained motion like a rotation or vibration. Unlike a rotation or vibration, 
a portion (in the neighborhood of a potential barrier) of a translation may be 
expected to be short-lived; the "transit ion state" of a chemical reaction in a 
dilute gas probably decomposes to products (or reactants) very rapidly. 
While on the one hand, in the case of  the internal rotation problem two 
distinct reactive events could be recognized--namely (1) "ac t iva t ion"  to a 
reasonably well-defined rotator microstate from a librational microstate 
trapped in an "initial s tate" potential well and (2) "deact ivat ion"  to a 
librator state in a "final state" potential wel l --on the other hand, in a dilute 
gas chemical reaction a single collisional event may send the reactants rapidly 
over the barrier and far into the product region; there need be no persistent 
high-energy oscillation or rotation to and from reactant and product regions, 
so the transition state will be "short-l ived." In the case of a reaction in 
liquid solution, however, it is conceivable that the so-called solvent " c a g e "  
may in some cases constitute containing potential "wai l s"  which provide the 
transition state with such longer lived oscillatory properties. Therefore both 
"short- l ived" and "long-l ived" (in the sense just described) transition states 
must be considered, though not for the same reaction. 

This paper is devoted to expansion of the formulation of I in such a 
fashion as to allow for these complicating features of chemical reactions. 
To encompass the features associated with both "short- l ived" and "long- 
lived . . . .  activated complexes," we shall treat two limiting cases, one in which 
this complex suffers no collisions (other than the one that created it) during 
its evolution to products and one in which its interactions with other mole- 
cules during this period suffice to equilibrate the relative populations of  its 
microstate populations). We shall find that the results for these two cases are 
remarkably similar and that the physical basis for this is such that one may 
also expect similar results for intermediate cases. 

The stochastic master equation, which provides the point of  departure 
for our analysis, should be at least schematically applicable to reactions in 
condensed phases as well as to those in the already well-understood gas 
phase.(1,2,12~ 

However, as noted above, the treatment to be given here is not quantita- 
tively applicable to all reactions. It  is limited by the fact that we do make the 
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aforementioned assumption of (approximate) internal equilibration of 
microstates of  each reactant or product species. This approximation is 
equivalent to the assumption that "nonreac t ive"  events, i.e., ones in which 
molecules may change their microstates but not their chemical nature, are 
much more frequent than "reac t ive"  ones. When this is true the system has 
ample time after each reactive event to reach such a restricted equilibrium, 
i.e., one subject to the constraint of  fixed relative concentrations of the 
reacting species, before a subsequent reactive event can change these relative 
concentrations to new values. 

One case in which this assumption may be an excellent one is that of  a 
bimolecular reaction in sufficiently dilute solution. For such a reaction non- 
reactive but energy-redistributing events, which need only involve a single 
reactant molecule and solvent, are much more frequent than reactive events, 
which must involve two reactant molecules and (usually) solvent. 

One case in which this assumption would be expected to be a poor one 
is that of dissociation (and recombination) of  diatomic molecules in a single 
component  phase. This reaction has been discussed in detail by Donoghue. <~a~ 
Reactive and nonreactive events occur with frequencies that are of  the same 
order of  magnitude, so no Boltzmann distribution exists among the levels 
of reactants until total chemical equilibrium is reached. In particular the 
error made in the calculation of the associated rate constants with this 
assumption could be as much as a factor three. 

Nevertheless, even for cases in which reactive events are not clearly 
less frequent than nonreactive ones, the development here should serve the 
didactic purpose of schematic illustration of the appearance, even without 
the assumption of equilibrium between reactants and activated complexes, (4~ 
of the dependence of rate constants on "free energies of activation" in 
condensed (as well as gaseous) media. More importantly, it shows the 
dependence of "frequency factors"  on "effective numbers of  states." This 
latter feature should not disappear in a more general treatment, although 
its quantitative form could be altered. Its effect will often be enormous in 
comparison with the factor three of  error introduced in the least favorable 
cases by the assumption of internal equilibration. 

This assumption is not necessary for the appearance of a generalized 
version of Arrhenius temperature dependence of rate constants, as was seen 
in Eq. (7) of  I. That equation, involving an Arrhenius exponential factor 
averaged over time-dependent microstate probabilities, could easily be 
generalized here. However, neither Eq. (7) of I nor its generalization are very 
useful, because the average involved cannot be evaluated in general. For a 
few simple cases, however, the averages can be evaluated and for these 
Widom (8~ has shown that no equilibrium assumptions, other than those that 
define the temperature (i.e., those involving the reservoir alone), are necessary 
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for the appearance of an Arrhenius exponential factor. Evaluation of the 
average in the general case involves a detailed examination of the full master 
equation of the system, which contains transition probabilities that involve 
nonreactive as well as reactive events. The master equation (9) employed here 
is a particular moment of this full equation, which involves only the reactive 
events (including the coupled reservoir transitions). When the transition 
probabilities for nonreactive events greatly exceed those for reactive ones, 
the internal equilibrium assumption is valid and we need only explicitly 
consider (9). The general discussion of chemical reactions when the reactive 
transition probabilities are comparable to nonreactive ones is a problem for 
further research. 

The basic results to be obtained for the model treated here are that (1) 
although the rate constant proves to depend on a "free energy of activation" 
in the familiar exponential fashion, it does so for a physical reason different 
from that assigned to it by classical transition state theory, (2) the rate con- 
stant carries a preexponential factor that depends on the fundamental 
couplings involved in the reaction and is thus not simply kT/h, and (3) a 
dependence on an "effective number of states" is identifiable in this pre- 
exponential factor. The recognition of the existence of this dependence on 
"number  of states" and of the physical basis for it may have important 
implications for interpretation of a possibly important feature of certain 
types of catalysis (specifically heterogeneous catalysis and catalysis by 
enzymes). A primary purpose of this paper is therefore to obtain and briefly 
discuss this particular result. 

Section 2 presents the required general treatments. Section 3 presents 
specific results to which the general results of Section 2 reduce for the 
particular example of a second order reaction. Section 4 gives the brief 
discussion of the possible role of the "number  of states" in catalysis. A 
subsequent paper (12~ will focus attention on that part of Section 3 that 
pertains to dilute gas reactions and will display more specifically the relation 
between the stochastic-theory results of Section 3 for these cases and the 
results obtainable from collision theory ~4) in these gas-phase cases. 

2. T R E A T M E N T  O F  T H E  G E N E R A L  M O D E L  

As stated above, the principal assumptions defining the model treated 
here are that (1) transitions among microstates of the system-cum-reservoir 
are governed by a stochastic master equation and (2) the transition prob- 
abilities for nonreactive events greatly exceed those for reactive events. The 
latter will allow use of an equilibrium expression for the ratio of the popula- 
tion of any microstate (e.g., quantum level) of a given molecular species 
(reactant or product) to the population of any other microstate of the same 
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molecular species. It will in some cases also permit a similar treatment of  the 
ratio of the population of any microstate of an "activated complex" to that 
of  any other microstate of  the "activated cornplex." It certainly does not 
permit the use of  an equilibrium expression for the changing (as the reaction 
proceeds) ratio of  the population of any (combined) microstate of  (a stoichio- 
metric combination of) reactant molecule(s) to the population of any micro- 
state of  a (stoichiometric mixture of) product(s). More to the point, it does 
not permit the use of  an equilibrium expression for the ratio of the population 
of any microstate of activated complex to that of any microstate of a stoichio- 
metric combination of reactant molecules (or product molecules). 

Consider a chemical reaction of the general form 

~v,A,~-~v,,Ck (1) 

We will find it necessary to discuss two kinds of  reactions. The first class 
includes reactions in which reactants go to products via an identifiable 
"activated complex" that persists long enough to equilibrate internally via 
nonreactive events ("collisions") before reacting to form products. The other 
class includes reactions that proceed via a very short-lived or virtual "acti-  
vated complex" that decomposes to products before any nonreactive event 
has time to occur. In this case the "activated complex" is defined only via the 
requirement of  a " threshold"  energy for the single reactive collision event. (~) 
Clearly there is no sharp distinction between these two classes of  "activated 
complexes." However, we would have suspected a priori that there would be 
a marked distinction between the two limiting cases. As we shall see, how- 
ever, there proves to be no discernable differences between the important 
temperature dependencies in the limiting cases, and at least for low densities (~e) 
there proves to be very little difference between the "pre-exponent ia l"  
factors that appear in the two limits. 

The net reaction (I) is unchanged by the inclusion (on both sides) of  
arbitrary numbers of  "reservoir  ~ molecules, which do not change their 
identity during the course of  the reaction but do play a "reservoir"  role in 
that certain of  their degrees of  freedom exchange energy (and momentum) 
with the reactants and products. We note that this role may be played either 
by molecules of a separate inert species or by molecules of the reacting 
species that, for a particular event, maintain their identity. 

2.1.  L o n g - L i v e d  C o m p l e x  

For the case involving the long-lived equilibrated "activated complex" 
we need to consider "act ivat ing"  processes of  the form 

i j k j 
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and "deact ivat ing" processes of  the form 

E v~B~ + ~vjRj~-~v,C, + ~vjRj (2b) 
k j l J 

in which Rj indicates a reservoir species (which, as explained above, may or 
may not be of the inert variety). In many cases the "transit ion state" 
~ v~Bk can simply be conceived as a single (k = 1 only, v~ = 1) "activated 
complex" Ba. Mathematically, we only need investigate reactions of the 
form (2a), since these only differ by label changes from either those of the 
form (2b) or those of the direct A ---> C case (the case in which the "activated 
complex"  is short-lived). 

We use lower case notation, a~, b~, e z, or rj, to specify the particular 
(quantum or classical) microstate of  a particular molecule of the chemical 
species denoted by the upper case symbol A,, Bk, Cz, or Rj, respectively. With 
the general symbols xs and Xs, where x~ represents ai, bk, cz, or rj, and 
where Xs represents & ,  B~, Cz, or Rj, we bear in mind that for a particular 
choice of  X~ the symbol x~ runs over its characteristic values (which may be 
discretely or continuously distributed), each value denoting a particular 
microstate of  X~. 

We will need to consider each possible set a of  specifications of micro- 
states ai of a stoichiometric combination of interaction reactant molecules 
that  collectively undergo a reactive transition. For every ai of  every A~, the 
set a contains v< molecules of type Ai in microstate a~. The v~ are con- 
strained by the condition that their total must be just the stoichiometric 
coefficient v~ in (1) and (2), i.e., that 

: ,  (3) 
ai  

Inasmuch as the symbol a designates for all reactant species A~ the number of  
molecules in each microstate a~ in the particular set a, it clearly designates 
the composite microstate of the molecules in this interacting set of  reactant 
molecules. We will of  course need to consider all possible sets a. 

In exactly analogous fashion we introduce for "activated complex," 
"product ,"  and "reservoir" molecules the concept of microstates of  sets b, e, 
and r, respectively. When we are dealing with statements that are true for all 
of these types of  sets we shall naturally use the notation x. Accordingly, we 
write, for each set x, 

~.. vx, = vs (3') 
x s  

the generalization of (3). 
In the master equation that we shall use to describe the rate of (2a), 

for example, we shall assume that the rate of each transition contributing 
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to the forward component ,  for example, of  process (2a) will be propor t ional  
to the relevant products  o f  microstate concentrat ions (n~1)% ... (n~2)v~2 ... of  
reactant species A1, A2,...and of  reservoir microstate concentrat ions 
(n~l)vrl ... (n~)% .... Thus it will be convenient  to introduce the " c o n -  
cent ra t ion"  fix of  composi te  microstate x by 

fix = I ~  ~ (fi~)v~ (4) 
8 Xs 

where fi~ is a dimensionless a measure of  the concentrat ion o f  chemical 
species X~ in microstate x~. 

With this notat ion we can write the "mas te r  equa t ion"  in an especially 
concise form. The obvious generalization o f  the master equation used in ! 
for the flux qAB(t) of  conversion of  reactants to activated complexes at time 
t is 

qA~(t) = - (1/~0 d~A,(t)/dt 

= ~ ~ ~ [W(ar'lbr)B~'(t)n~(') 
] '01=0 a , b ,  

r , r '  

- W ( b r l a r ' ) f i ~ ( t ) f i b ( t ) ]  (5 )  

where fiA~(t)= ~a~ fi~(t) and W(ar ' lbr  ) is the transition probabil i ty for 
(composite) microstates a and r '  going to microstates b and r. W(br!ar '  ) is 
the corresponding transition probabili ty for the inverse process. 

In  conventional  uses of  master equations the dependence on reservoir 
microstate contentrat ions is usually lumped together with that on transition 
probabilities. Thus, transition probabilities W(a[b) are used; these bring 
averages over all reservoir processes that can supply the energy requisite to 
the a --+ b activation. The advantage,  to be realized below, o f  explicit retention 
o f  this summat ion over r, r', as well that  over a, b, is that  each term of  the 
sum over r', r, a, b corresponds to complete specification o f  a total transition 
that  must  both  conserve energy, 

Ea + Er ,=  fb + E,, (6) 

and obey microreversibility, 

W(ar/br '  ) -- W(br']ar) (7) 

3 ri~ is related to the number density nx~ of species X~ in microstate x~ by 
Ftxs ~ yXsi~lxs  

where 7x~, having dimensions of a volume, is a measure of the volume unit appropriate 
for the species X~. In a subsequent paper (xm we shall see that at low densities ~'x~ is 
just the cube of the thermal wavelength of the X~th species. The total density of chemical 
species X~ is related to all the fi~ by 

x s  x s  
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Before utilizing these, however, we introduce the assumption discussed 
above concerning the ratio of populations of states internal to a particular 
species. Thus we write 

where 

~ ( t )  = ~x,(t) exp[-13(E~ - Fx,)] = ffx,(t)Px~ (8) 

and 

where 

nx(t) = ] ~  [Bx~(t)] ~ 
8 

When (9) and (7) are substituted into the master equation (5) the latter 
becomes 

qAB(t) = ~ ~ W(ar'[br)[Ba(t)PaPr, - ~(t)PbPr]6R(t) (10) 
j , V  t a l )  

rr'  

Now utilizing energy conservation, (6), we have 

P~P~, = PbP~ exp[--13(FB -- FA)] (11) 

an expression the validity of which does not imply an equilibrium between 
a and b. 

When (l 1) is substituted into (10) the latter reduces to 

q A u ( t )  = { / ~ A ( t ) e x p [ - - f l ( F B  - -  F A )  ] - -  r iB(l)} 

• E ~ W(ar'lbr)Pbnr(t) (12) 
j , v  t a b  

r F  p 

The physical basis of this appearance of a "free energy of activation" is 
the subject of a brief commentary in the discussion in Section 5. 

To simplify notation, we define a quantity W~u by 

W~A~ = E W(ar'[br)PbP~ (13) 
a b  
rr" 

8 X a 

Fx = ~ ~F,:~ 
8 

exp(-13Fx~) ~ exp(-13E, s), t3 = l /kT 
x s  

and where we recognize that each total (dimensionless) concentration gx~ 
(e.g., each B& and each Jqc,) may change as the reaction proceeds and is not 
necessarily equilibrated with any other Bx, (na,, no,, or nB~). From this and 
Eqs. (3) and (4) it follows that 

~x(t) = ~x(t)exp[-13(E,, - Fx)] ~ ~x(t)P,, (9) 
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where the superscript denotes an average for a fixed set v of  v/s ,  and the 
general rate equation becomes 

qAs(t) = {~a( t )exp[- /3(Fs  - FA)] -- BB(t)} ~ W~R( t )  (14) 
V 

where we have written the sum over all j, vj, as a sum over all sets v. 
In the case in which all the reservoir species are distinct from reactants 

(large excess of inert species) nR(t) is independent of time. For this case (14) 
is formally similar to the equation obtained in I, 

qAs(t) = WAS{~VA(t)exp[--/3(Fs -- FA)] -- ~7s(t)} (15) 

where 

WAs = E w~S~l~ 
,# 

From similar consideration of (2b) we obtain an equation for qes(t) 
that is exactly analogous to (15). 

Whether the reservoir species are reacting or not, the activation free 
energy differences will dominate the temperature dependence of these 
rates. With regard to the magnitude of the residual temperature dependence 
in Was, it should be recalled that in the analysis leading from Eq. (5) to 
Eq. (12), we eliminated the "concent ra t ion"  Br, of  the higher energy member 
of  the pair of  reservoir microstates involved in a transition by expressing it 
in terms of the concentration ~7r of  the corresponding lower energy member ~ 
with use of  the Boltzmann distribution in the reservoir. Thus it is the 
weighting P~ of the lower energy member  r that survives in the expression 
(13) for W~B. Since nonzero values of  W(ar' lbr ) are permissible for " l o w e r "  
reservoir microstates r of any energy, and since P,  is normalized, there is 
no reason to expect a large temperature dependence in WAS. If, on the other 
hand, we had alternatively used the Boltzmann expression to eliminate the 
concentration ,7~ of the lower energy member of  the reservoir microstate pair 
in favor of  that, g~,, of  the higher energy member, we would have obtained 
an expression for WAS involving the weighting factor P~.. With respect to 
r', nonzero values of  W(ar']br) do not begin with the lowest energy that a 
reservoir microstate r '  can possess but rather with an energy lying above the 
lowest by the quantity Eb -- Ea (see footnote 4). As a consequence of this 
"gap , "  the presence of the normalized factor Pr, in an expression for the 
preexponential quantity W~_s would introduce into it an enormous tem- 
perature dependence, which would be correspondingly compensated by the 

4 Of course we recognize that we may include, in the sum over transition probabilities, 
transitions in which Ea > Eb for some a and b. In this case the "concentration" ~r of 
"lower" energy member of the pair of reservoir microstates is really that of the higher 
energy member. This contradiction in terminology is of no consequence so long as the 
terms in which Eb > Ea dominate the sum. This is assured if FB > FA. 
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altered sign [as compared with (15)] in the exponential factor that such an 
ill-considered formulation would entail. In the formulation used here and in 
I, however, the principal recognizable temperature dependence has been 
compressed into a single factor, which is then found to be of the form of the 
familiar simple exponential dependence on a free energy of activation. 
Further, but hardly exhaustive, discussion of the possible temperature 
dependence of an averaged transition probability proportional to WAB can 
be found in Section IV of I. 

As in I, we can eliminate the "activated complex" concentration tiB(t) 
from (15) and its analog for qcB via a steady state approximation. This 
procedure yields 

q(t) = qA~(t) = qRe(t) = --qeB(t) 

VCAB Wr 
WA~ + WeB 

x {tiA(t)exp[--fi(F~ -- FA)] -- no(t)exp[--fl(FB -- Fe)]} (16) 

When the reacting species also play the role of reservoir, the W's in (16) 
will be time dependent as a consequence of their dependence on tiR(t). 

2.2.  S h o r t - L i v e d  C o m p l e x  

When the reaction (1) proceeds via a short-lived or "virtual . . . .  activated 
complex" it is meaningless to employ (8) and (9) for B along with a steady 
state approximation. In this case the intermediate complex reacts to form 
products before it has a chance to undergo equilibrating "collisions." It is 
then necessary to consider the rate equation for the direct process 

j l J 

By the same argument as presented above, we obtain a rate equation 
for (17), 

q(t) = qAc(t) = ~ W~ctiR(t){tiA(t) exp[-f i (Fc -- FA)] -- tic(t)} (18) 
v 

where 

and where 

WAr 
a c  
rip" 

Ea + Er, = Er + Er (19) 

Written in this form, Eq. (18) in this case still carries in its preexponential 
factor W~ AC the principal temperature dependence caused by a potential 
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barrier. The main effect o f  a potential barrier in this case of  a direct A -+ C 
process is to impose a threshold energy condit ion on microstate combinat ions 
a, r '  and c, r that  are to yield nonzero transition probabilities W(ar ' Icr  ). We 
therefore look for a version of  (19) in which this energy " g a p "  and con- 
sequent temperature dependence have been removed f rom the pre-exponential  
factor. 

Since we are assuming in this case that the reaction proceeds via the 
format ion of  a set o f  complexes B toften a single complex) that decay into 
products before any nonreactive event can ocucr, the intermediate com- 
plexes in each reactive event must  have the same energy as both  the reactant 
combinat ion and the product  combination.  Thus for each set o f  complexes 
b formed in a given event there are sets a and r '  such that 

E~ = E .  + Er, = Ec + Er (20) 

We assume that the nonzero W(ar ' lcr  ) all satisfy 

Eb = E,  + Er, /> Eb ~ (21) 

i,e., that  E~ ~ is the " t h r e shho l d"  energy for the reaction. 
With this condit ion the summat ion in (18) can be written as 

WXc = ~ A(E, + E~.lE,)W(ar'lcr ) exp[--fi(Eb -- Fc - FR)] 
a , b , c  
r , r '  

= {exp[--5(FB -- Fc - F~)]} 

where 

A(E, + Er, IEb)=IIo 

We see that  W~e is o f  the form 

where 

if Eb = Ea + E~, (22) 
otherwise 

W~.e = W ~ Ae exp[--/~(F~ -- Fe - FR)] 

WAe = Pb 2x(Ea + Er.lEb)W(ar'ler) 

With this substitution, (18) becomes 

q(t) = ~ - - ~  - W aenR(t) 
v 

• {~A(t)exp[--/?(FBR -- FA)] -- ~e( t )exp[-- (F~R -- Fe)]} 

where 
FB~= FB --FR 

(23) 

(24) 
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A difficulty is that each Fm~ depends on its set v. However, we can rewrite 
(24) in terms of an average "free energy of activation" when the time 
dependence of nR may be neglected. Thus we may write 

qAc(t) = W A C { / ~ A ( t ) e x p [ - / 3 ( F B  - FA)] - -  17e(t)exp[-(ffB - Fc)]} (25) 

where 

exp(-/3fiB) = ~ exp( -/3FB~t) 

and 

WAe = ~ W~_efiR e x p [ - - / ? ( F B R  --  ffB)] 

Thus we see that, regardless of the lifetime of the intermediate, an 
"activation free energy" appears in the rate expression wherever the forma- 
tion of the "activated complex" involves a true activation. In a subsequent 
paper we will see that, for a particular case at low densities with no inert 
reservoir present, the rate expressions (16) and (25) are simply related. 
Equation (25) is a generalization of the results of the classic paper of  Ross 
and Mazur, (1) in which it was shown that a free energy of activation appear 
whenever the reactive cross section for a bimolecular reaction has a thresh- 
old. We will make more detailed contact with their results as well as with 
those of Eu and Ross (2) in a subsequent paper. (12) 

3. I L L U S T R A T I V E  E X A M P L E  

Here we illustrate the results of Section 2 by considering the particular 
example of  a second order reaction. Thus we consider 

A1 + A2 + v R ~ C 1  + C2 + vR (26) 

where R is a single reservoir species (e.g., solvent) and v can take on arbitrary 
nonnegative integral values. To keep the example simple, however, we 
retain only v = 0 and v = 1 ; the essential structure of the equations including 
arbitrary v will be obvious. 

First we treat the case in which (26) proceeds via a relatively long-lived 
"activated complex." We depict this mechanism as 

A1 + A2 + v R ~ B  + v R ~ C 1  + C2 + vR (27) 

For this reaction (16) is 

q ( t )  = qAB(t)  = - - q c ~ ( t )  = WA~A2B + Wclc2B 

X {ffAl(t)ffA2(t)exp[--/3(FB -- FA1 -- FA2)] 

-- ffc~(t)ffc2(t)exp[--/3(F~ -- Fcl - Fc2)]} (28) 



Stochastic Theory for Rate Constants of Chemical Reactions 391 

where 

with 

and 

~/A1A2 B 0 1 

Wola~B = ~ W(ala2[b)Pb 
axa20 

W~IA~B = ~, W(ala2r'Ibr)PoP~ 
c~la2b 

rr" 

WcI%B is given by a totally analogous expression. 
We wish to compare this with the "direct" bimolecular reaction, also 

of the form (26), in which the "activated complex" decays so rapidly that it 
never encounters a nonreactive event. Then (25) reduces to 

where 

q(t) = WA~A2C~%{17A~(t)ffA~(t)exp[--/?(FB - FAt -- FA~)] 

- ~%(t)~%(t)exp[--/3(FB -- Fc~ - F%)]} 

exp(--fiFB) = exp(--fiFB) + exp[- l~(F~l  - F~)] 

(29) 

and 

WalA=%C2 = WAlalc~c2 exp[--/?(FB -- FB)] 

+ W 1 {exp[--/~(FB1 -- FR -- FB)]}~ AIA2CIC2 

with 

w  A olo2 = A(eal + E 2[e0)W(ala21cl  ) 
O altZ2 

0102 

exp(--/3FB) = ~ exp( - /3e0)  
0 

01 ala2r" 
blb2r 

and 

exp(--fiFB,) = ~ exp(- /?Fol)  
bl 

Not ing  that,  when F~ 1 = FB + F~, FB = F~, we see that  (29) and (28) 
are similar in fo rm not only to each other but  also to the corresponding 
equat ion of  the classical transit ion state theory, with the exception that  the 
f requency factors in (29) and (28) involve the fundamenta l  couplings in the 
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system (through the microscopic transition probabilities) and are not simply 
kr/h. 

4. P R E - E X P O N E N T I A L  F A C T O R S  A N D  THE I M P L I C A T I O N S  
FOR C A T A L Y S I S  BY LARGE M O L E C U L E S  OR C R Y S T A L S  

The pre-exponential factors WAB and We~ in (16) can be observed to 
contain strong dependences on effective numbers of initial states and final 
states, respectively. This point was originally recognized in I for the special 
case treated there and will be examined both more generally and more 
precisely here. Consider, for example, W]B in Eq. (13), 

W ~  = ~ '  W(ar ' Ibr)Pb(r)er(r)  (30) 
a b  
r l ?  r 

where we explicitly indicate that the thermal weighting factors are evaluated 
at temperature T. 

We observe that only the sums over r and b in (30) are weighted thermal 
averages. The sums over a and r' are unweighted as they stand. If the transi- 
tion probabilities W(ar'lbr) were all to have the same value 14/o for total 
energy (Ea + E~, = Eb + E~) less than some cutoff energy (a cutoff being 
necessary to make the sum converge in this unrealistic example), then 
W]B would be equal to /4/o times the number of states {a, r'} having total 
energy less than this cutoff energy. Indeed we may in general expect the sum 
to be given by 

W~.B = f~_RW~,B (31) 

where f~R is an effective number of initial states that contribute to the 
reaction and W~B is an average transition probability. In the appendix we 
show that the identification 

~Art = [SE~R/SEAR(Tw")] exp{[Sa(Tw ~) + Sr~(T~)]/k} (32) 

is an especially convenient one. SA(TJ) and Sg(Tw ~) are the reactant and 
reservoir entropies evaluated at the "effectiveness temperature" Tw ~. This 
temperature is defined by Eq. (A. 15) of the appendix. The variances SEAR(T) 
and SE~rt are just rms energy fluctuations defined in Eqs. (A.8) and (A.16) 
of the appendix. The ratio of these variances should be of order unity. Thus 
the principal contribution of f~R comes from the entropy factors. The 
energy kT~ ~ determines the effective cutoff energy for the purpose of counting 
the number of effective initial states. 

Although the factors D-~_R and W~,B of the expression (31) for WIB 
and the analogous factors f2~R and WY e~ are no easier to evaluate precisely 
than W~m and W~B, this decomposition into factors representing effective 
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numbers of states and average transition probabilities does assist in the 
identification of situations in which the overall "frequency factor"  may be 
exceptionally large. Specifically it suggests that " la rge"  catalysts, that is 
catalysts containing large numbers of degrees of freedom and therefore 
large numbers of microstates, may accelerate reactions in part by raising 
the effective number of states participating in the reaction. Consider, for 
example, situations in which the rates of binding of reactants to enzymes or 
to solid catalysts are fast relative to the subsequent reactions taking place in 
the enzyme-substrate or solid-substrate complexes and in which rates of 
release of products from enzymes or solids are also fast in this sense. In such 
cases the transformations occurring within the complexes are the rate- 
controlling steps and the enhancements of the factors f~R and f2~l~ that 
the bound enzymes or solid catalysts may contribute to these steps can be 
significant for the rates of the overall reactions. 

In cases in which a reactant molecule is actually chemically bound to an 
enzyme it would seem most natural to treat the enzyme as part of the initial 
species A for the rate-controlling reaction step. In cases in which the binding 
is less strong, it might seem more natural to treat the enzyme as part of the 
reservoir R. If  the enzyme remains chemically unaltered in this step (as well 
as for the overall reaction), the choice is an arbitrary one, a circumstance 
which must be reflected in the theory. We note that the factor ftAR is indeed 
symmetric with respect to reactant A and reservoir R. 

This discussion has been given in terms of the case involving a "long- 
lived activated complex" and involving only a single important value of 
v. In the appendix it is shown that similar conclusions are obtained when all 
values of v are considered as well as when the "activated complex" is 
"short-lived." 

A typical enzyme has on the order of 105 vibrational degrees of freedom. 
(It will be shown in a subsequent paper that, at least at low densities, only 
internal, as opposed to translational, degrees of freedom contribute signi- 
ficantly to ~). If, for example, four of these can effectively couple to the 
reaction and each possesses roughly ten discrete quantum levels, then the 
density of initial states ~)AR will be greater by a factor 104 in the enzymatically 
catalyzed case than in the case in which no such large catalyst is present. 

5. D I S C U S S I O N  

The principal results are most concisely stated in the general equations 
(13), (16), (25), and (31). 

It was emphasized in Section 1 that the familiar assumption of equilibrium 
between initial state and transition state (or activated complex) is not 
required in the formulation of this stochastic model of chemical kinetics. 
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It should now also be clear that the physical basis of the appearance of an 
exponential dependence on a "free energy of activation" in the analysis 
leading to Eqs. (16) and (25) is different from that which underlies the 
the conventional treatment. In the latter no such exponential dependence on 
a free energy of activation appears in any expression for the net flux of 
activation, which we have here called qAB in the case of  the " long-l ived" 
activated complex (the only case considered in the conventional treatment). 
Rather, it originates, in the conventional treatment, in the expression for 
what we have here called q~c for this case; its origin in qBc is a consequence 
of the dependence of qBC on riB, which is assumed, in the conventional 
treatment, to be in Boltzmann equilibrium with hA. In the present formula- 
tion, however, equilibrium between A and B, i.e., qAB = 0, is a condition for 
no net reaction at all. Rather, the exponential dependence of a nonzero 
reaction flux on a "free energy of activation" originates in qAB (as well as 
qBe). Its appearance in qAB is a consequence of the fact that qAB depends not 
only on all the n, but also on all the n~, (Eqs. (3) and (5)]. In accordance with 
energy conservation, each reservoir microstate r '  that is to supply effectively 
the requisite activation energy Eb -- Ea must lie above the microstate r to 
which it decays by precisely the amount  Eb -- Ea. Since nr, and n~ are, in 
the model, governed by rapid, frequent nonreactive events, they are in 
relative equilibrium, so that nr, can be expressed in terms of n~ by a Boltzmann 
formula involving Er, - E~ = Eb -- E,  [Eq. (11)]. With summation over r 
the latter accounts for the Arrhenius factor in terms of Eb -- E~. When the 
summation over all a, b is performed, the Arrhenius energy dependence 
emerges as a free energy dependence. 

Equations (16) and (25) show that the zero-flux, i.e., equilibrium, 
condition is precisely the thermodynamic condition, according to which the 
(standard) free energy change Fe - FA for the overall (A---> C) reaction is 
related to the "equilibrium constant" t~C/BA by 

f c  - F A  = - k r l n ( ~ c / g A )  (33) 

That this result has been obtained in this stochastic treatment may, at first 
sight, appear to be simply a consequence of the assumption of Boltzmann 
equilibrium in the reservoir. However, the fact that the reacting system 
reaches its state of  zero flux at precisely the point where it has been locked 
into a distribution function of the same form as that in the reservoir is a 
consequence of energy conservation [Eq. (8)] and microscopic reversibility 
[Eq. (9)]. Indeed the Boltzmann distribution itself can be very simply derived 
by use of  these principles in conjunction with a stochastic master equation of 
the form of (7) ,with only the added assumption that the zero-flux condition 
is obtained by "detailed balancing. ''~I~ 

We have thus seen that this stochastic model does yield the well-known 
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factors involving free energies of  activation, and therefore energies and 
entropies of activatiom for forward and backward rates, which combine in 
the long-time (zero-flux) limit in the familiar fashion to reduce to the correct 
description of equilibrium concentrations in terms of energy and entropy 
changes for the overall reaction. It is nonetheless true, however, that the 
total dependence of the absolute values of  the forward and backward rates 
on entropy factors associated with the reacting molecules, including the 
entropy dependence now identifiable in the "frequency factor," is not 
primarily a dependence on entropies of  activation (kS* in the usual notation) 
but is often more nearly a dependence on the absolute value of the entropy 
S ~ of the activated state alone. To see this, consider the special case in which 
the shape and depth of the initial state potential well are similar to those of  
the final state. In such a situation 

and 

m m v 

W.~ = WeB = W (34) 

t2~rt = t2~R = t~ (35) 

t~ v exp{[S(Tw) + SR(T~)]/k} (36) 

[where S ( T )  = SA(T)  = So(T)] in accordance with Eq. (A.19) [the ratio of  
variances has been omitted from (36) because it is generally of order unity]. 
If T~ ~ 7", then the factor eS(% ~'~ from the frequency factor may be readily 
combined with the common factors e -s(r~/k from the (exponentials of) free 
energies of activation for forward and reverse reactions to yield for the 
forward and reverse rate constants 

and 

k r = � 8 9  - EA)] exp[(SB + SR)/k] 

=- �89  AEI* ) exp(S*/k)  (37) 

kr = �89  -- Ec)] exp[(SB + SR)/k] 

-= �89 W e x p ( - f i  AET*) exp(S*/k)  (38) 

The reasonableness of  this result is most clearly seen by application of 
the same considerations to the expression (14) for q,B rather than, as above, 
to the expression (16) for the overall reaction flux. As applied to the forward 
component,  for example, of  qa~, these considerations indicate that the rate 
of transition from initial state to transition state depends on the "number  of 
states" of  activated complex [i.e., on exp(S*/k)] but not on the number of  
initial states. Inasmuch as the activated complex is the "final s tate" of  this 
forward component  of  qAB, we see that this result conforms to the "golden 
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rule" of  Fermi, according to which the flux associated with a simple transi- 
tion is proportional to the density of final states for the simple transition but 
is not dependent on the density of initial states. 5 

It is, of course, this primary entropic dependence of a reaction rate on 
exp(S*/k) rather than on exp(AS*/k) that underlies the considerations of 
section 4 concerning a possible feature of catalysis by enzymes or solid 
catalysts. If, in addition to the oft-considered catalytic lowering of AE* 
there existed only the possibility of catalytic alteration of AS* (i.e., if the 
constant factor kT/k were the correct frequency factor), then binding of 
reactants to particles with large densities of states, such as enzymes and 
solids, would not of itself have any obvious effect, since the entropies of  the 
initial and activated states would be raised by roughly the same amounts and 
these changes would be cancelled out in AS*. The present analysis indicates, 
however, that the larger values of S* attributable to enzyme-reactant or 
solid-reactant activated complexes, as compared with those of unbound 
reactant activated complexes, are not totally offset in their influence on 
reaction rate by the correspondingly larger values of entropies of initial 
states. 

It should be borne in mind, however, that, as shown in the analysis in 
Section 4 and in the appendix, to count as part of exp(S*/kL the microstates 
(levels) of a catalyst degree of freedom must be effectively coupled 6 (through 
significant values of associated transition probabilities) to the appropriate 
reactive degrees of freedom of the reacting molecules. For this reason it can- 
not be stated that this observation concerning a possibly important entropic 
effect of catalysis by large particles is a necessary consequence of the stochastic 
model for kinetics presented 'here. The stochastic model raises this as a 
possibility but by itself cannot ensure that the transition probabilities W 
have the requisite properties for realization of the effect. 

The foregoing extension of an adaptation (l~ of  the stochastic approach 
to chemical kinetics suggests that the stochastic model may provide the 
structure for an at least didactically useful bridge between, on one hand, some 
of the concepts of  the transition state theory ~4~ and, on the other hand, the 
various aspects of  collision theory. The approach leading to the rather firm 
ground of the collision treatment C1'2) of bimolecular dilute gas reactions will 
be discussed in a subsequent paper. Tests of the structural integrity of  the 
bridge, in particular the validity of  the stochastic master equation and of the 
assumption that nonreactive events have significantly larger transition 
probabilities than reactive ones, must be subjects of further investigation. 

Our results have not, however, been derived from the Fermi rule. The conformity with 
it seen here is instead a consequence of the fact that the physical basis of this particular 
feature of the Fermi rule is also contained in the master equation (9). 
This is most easily seen when the catalyst is treated as part of the reservoir. 
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As mentioned in Section 1, the latter assumption would seem to be variable 
in its accuracy as it is applied to different cases, the best cases for its applica- 
bility clearly being those of reactions (other than unimolecular reactions) in 
sufficiently dilute solution with inert solvent. 

A P P E N D I X .  I D E N T I F I C A T I O N  OF 9- F A C T O R S  

In this appendix we provide definitions of the _Q factors introduced in 
Section 4, which are directly related to the "effective number of initial 
states" that can affect reaction. Consider Eq. (15), which can be written in 
the form 

W ~  = ~, W(ar) (A.I) 
a r  

where 

W(ar') = ~ W(ar']br)PbP~ 
b r  

We can replace the sum over a and r by an integration over a density of states 

W(ar) = j dE pAR(E) WXB(E ) (A.2) 
a r  

where 

PAR(E) = ~ .  ~ (E  - Ea - Er) 

This expression should be compared with the corresponding integral 
expression involving FA and FR, 

= = ~" dE  - f iE) exp[--fi(FA + FR)] ~ exp[-/3(E.  + E~)] pAg(E)  exp( 
a r  d 

(A.3) 

If we assume that the states {at} in the sums are sufficiently closely spaced 
that mAR(E) can be effectively replaced by a continuous function of the 
energy, we then can estimate the integrals (A.2) and (A.3) by the method of 
steepest descent. 

For (A.3) this procedure yields 

exp[--/3(FA + Fa)] = {exp[--f iEAR(T)]}PAR(EAR(T))(2~r) 1'2 8EAa(T) 
(A.4) 

where EAR is defined as the solution of 

fi = ~[ln pAR(EAI~)]/~EAtt (A.5) 
and 

I 8  In p ~ ( E A R ) ]  -X C CA + CR (A.6) 
[aEA~(T)]~ = -- a E ~  _1 - k~ ~ - k9  ~ 
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CA (Ca) is identified as the total specific heat of reactant species A (reservoir 
species R). 

When we neglect higher derivatives of ~21n p/~E 2 (that these are small is 
implicit in the steepest descent assumption), it is easy to show that 

EAR(T) = EA + ER = ~(fiF)/'Sfi = ~ (E. + E~)Pa(T)Pr(T) (A.7) 
a r  

and 

[SEAR(T) ]  2 = ~ ,  [Ea + Er - EArdT)]2P,,(T)Pr(T) 
a r  

The entropy is then obtained simply as 

SAR(T) SA(T) + SI{(T) 
= ~ ( E ~ l ~  - F ~  - F ~ )  

k k 

= ln[(27r) ~/2 3EAR(T)p,uc(EAR)] 

(A.8) 

(A.9) 

where 

[3E~R] z = _ [8 In [OAR(E~R) W~g(EAR)]] -~ (A. 13) 
( e e l . )  2 J 

We see that (A.5) and (A.12) define an effective temperature 

~ = 1/kT~ ~ = 0[ln pAr,(E~R)]/~E~R (A.14) 

Then clearly we have (neglecting higher derivatives of 8E as before) from (A.7) 

E ~ .  = ~ (E. + ~r)W.r = EA~(r~)  (A.I5) 
a r  

war = W ( a r ) / W ~ B  

The variance 3EXR of course will in general be different from that 
obtained from (A.8) evaluated at TJ .  This is clearly seen when (A.6) is 

and where 

From (A.9) it is seen that (A.5) is just the thermodynamic relation 

fi = 1/kT = (l/k) ~SAR(EAR)/OEAR (a.10) 

By a similar procedure we can approximately evaluate (A.2) 

f dE PAR(E) WAB(E) = pAR(E~g) W~B(E~n)(27r) ~'2 SE~,g (A. 1) 1 

where E~AR is given as the solution to the equation 

In PAR(E#R) __ --? In WAB(E#R ) 
- (A. 12) 

8EXR ~EXR 
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compared with (A.13). Instead 3E~R is the variance of the weighting factor 

War 

[3F~ t2 = Z [Ea + Er - EAR(T~Y)]2War (A.16) ~ARJ  

a r  

We now make an identification of f~.~R. In particular a comparison of (A.11) 
with (31) suggests 

f~R  = (2~r) ~'~ 3E~.I~pAR(E~aO (A. !7) 

and 

wA,~ = W~B(EA,,) ( a . l  8) 

The expression (A.17) for ~Q~R has precisely the properties we expect. 
It says that the effective number of initial states that contribute to the reaction 
is equal to an effective density of states times a width in energy within which 
the corresponding transition probabilities are effective in inducing reactive 
transitions. In addition (A. 17) allows us to identify ~Q~.n with the correspond- 
ing entropy evaluated at the effectiveness temperature T~ ~. Comparison of 
(A.9) with (A.17)yields 

~ a  = [~E~l~/3E(ART~)] exp{[SA(T~ ~) + SR(Tw~)]/'k} (A.19) 

We notice that this expression makes reference to neither the "smooth-  
ness" assumption about the density of states, nor to the assumption that the 
sum can be approximately evaluated by integration via the method of 
steepest descent. Therefore we can define all relevant quantities [T~ ~ 
3EAR(T~), and 3E]a]  by Eqs. (A.15), (A.8), and (A.16). 

In a similar manner we can write (15) as 

WA~ = QA WAB (A.20) 
where 

Tw is defined by 

and 

where 

f~A = [SEA~/3EA(T~)] exp[SA(Tw)/k] 

a a 

a 

[ az :~ ]  ~ : ~ [z:. - E~(T~)]~w.  
a 

b 

(A.21) 

(A.22) 

(A.23) 

(A.24) 
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The Tw defined by (A.22) need not be equal to any T~ ~ defined for a 
T~ s. particular v by (A.15). However, Tw is a sort of average of the ~' 

We see from (A.20) that 

WAB = ~ W~,BnRY2~/Y2A (A.25) 
V 

implicitly contains enhancement factors 9~R/Y2A ~, f2 R (exact equality if 
all the ~' 77~ s are the same), which count, for fixed v, the effective number of 
initial reservoir states that can effectively transfer energy. 

Next we consider the f2 factor appropriate for the direct reaction (17.) 
We can easily show that in (23) 

W~c = ~2~ff'~_c (A.26) 

where 

t~ v = [~Ew~/SE~(Twv)] exp{[SA(Tw *) + Sc(T~ ~) + 2SR(Tw~)]/k} (A.27) 

Tw is defined by 

E(Tw ~) = EA(Tw ") + Ec(T~ ") + 2ER(T~ ") = ~ ( E ,  + Ec + E~ + E,,)w(ar'ler) 
t i c  

(A.28) 

where 

w(ar'lcr) = { ~  P~ A(Eti + E~,]Eb)W(ar'[er))/W~c 

The variances 3E~ ~ and 3E~(Tw ~) are defined in the obvious manner in terms 
of w(ar'lcr ) and PtiPcP~P~,. 

Finally, we note that (25) can be written as 

WAC = ~ WAC (A.29) 

where 

= [~E]c/~EAc(T~)] exp{[SA(T~) + Sc(T~)]/k} (A.30) 

T~ is defined by 

EAc(T~) = EA(T~) + Ec(T~) = ~ (E. + E . ) ~ .  (A.31) 
a e  

where 

V~c = (I~AC)-I ~ {exp[--/3(FBR - fiB)]} 

• ~ r,, A(E, + Er, IEb)W(ar'lcr) 
b i T "  

The variances ~EXc and SEAc(T~) are defined in the obvious manner. 
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As before, T~ is a sort of average of the ~' T~ s. We see that 

kVae = ~ {exp[- P(FBR -- FB)]}(fl~/f))nR ~V~c 
v 

~ {exp[--/3(FBR - FB)]}g2R217RI~Ae (A.32) 
V 

also contains enhancement factors for each value ofv  in the sum. 
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